Reducing the Risk of Hot Weather Concreting with Maturix® Sensors

Reducing the Risk of Hot Weather Concreting with Maturix® Sensors

As summer approaches us here at Kryton in Canada, we know that many of you will be planning your hot weather concreting. While the weather can be a joy to experience for yourself, it can also make concreting more challenging.

For one, high temperatures will accelerate the early-age strength gain of your concrete. This sounds like a great way to naturally expedite your schedule. But it’s hard to take advantage of that when you aren’t sure of how fast your concrete is developing.

Moreover, once high temperatures get excessively high, your concrete can develop a number of durability concerns. For instance, it can end up with delayed ettringite formation (DEF). And DEF can be quite a destructive force in moist environments as it can cause your concrete to prematurely deteriorate.

Outside of DEF, your concrete can also experience drying shrinkage. This happens when the concrete has suffered moisture loss after hardening. It increases the concrete’s tensile stress, raising the likelihood that the concrete will crack or warp.

All of which is terrible for constructing a solid, reliable structure. However, you can reduce the risk of this happening during hot weather concreting with our Maturix Smart Concrete Sensors.

So, How Do Maturix Sensors Help?

They give you an easy way to stay on top of your concrete’s thermal control plan. Once connected to type K thermocouple wires, which are positioned and attached to reinforcing rebar, the Maturix Sensors wirelessly transmit temperature data to a cloud-based platform every 10 minutes. Then, the platform takes that data and calculates the maturity based on the readings and a specific concrete calibration curve. In return, you get a result that accurately determines your concrete’s current strength. All of which allows you to tell exactly what temperature and strength your concrete has every day. And because this information is transmitted wirelessly, you can access it through any connected device, keeping you up-to-date on the situation, no matter where you are. Additionally, you can easily set up alarms to receive notifications via SMS or email when a certain temperature, strength, or maturity has been reached.

That in turn allows you to stick to the recommended temperatures for hot weather concreting and operate proactively as specified in ACI 305R: Guide to Hot Weather Concreting.

Of course, that’s just the start. There are a couple other advantages that come with Maturix. Let’s take a look at them.

They Enable You to Leverage Early Concrete Strength in Hot Temperatures

To start, with the insight they provide on strength development, you’ll notice right away when your concrete starts reacting to hotter temperatures. After all, you’ll see exactly when the concrete’s strength accelerates. So you’ll be able to plan your schedule to work with this expedited strength development. In turn, you’ll find yourself stripping forms at a faster rate, letting you keep up with any tight deadlines you have.

nd Their Real-Time Alert System Makes It Easy to Avoid Potential Temperature Concerns

You can set up this alert system to notify you and your team when the concrete meets, exceeds, or goes below critical thresholds. So long as you have a connected device, you’ll immediately know when your concrete is doing well and when it needs adjustments. That way, if your concrete ever exceeds recommended temperatures, you and your team can take the required actions to cool it down.

In short, Maturix empowers you to fix temperature concerns before they ever become a problem.

A confused young businessman looks at many colorful twisted arrows on the blackboard background.

Why Choose Them Over Other Available Sensors for Hot Weather Concreting?

Still, there are other sensors out there. What makes Maturix worthy of more consideration?

Well, Maturix comes with a number of unique features you aren’t likely to find elsewhere. Some of which include the following.

You Get Local Weather Data as Well as Temperature and Strength Data

To further bolster your understanding of your concrete’s development, Maturix Sensors gather data about the local weather. That way, you don’t just know how your concrete is doing. You also get a sense for what conditions your concrete faces throughout your construction project. Whether you have to deal with hot weather and rain or any other weather combination, you get the weather data integrated in your reporting.

You’ll Even Be Able to Reuse Maturix Sensors for Multiple Projects

One of the best cost-effective measures of these devices is that they don’t work like single-use sensors. These aren’t disposable devices that remain within the concrete. Instead, they are connected to disposable thermocouple wires. As a result, once you complete a project, you are free to take the sensors with you and use them for other projects for as many times as you like. This allows you to take advantage of all the features Maturix offers at a low cost. After all, you don’t need to spend a big chunk of your budget on new sensors with Maturix.

In the end, Maturix is a worthwhile investment that cuts down on your costs and makes hot weather concreting much less risky.

A Maturix Sensor is attached to metal with light shining on it.

So Why Not Give Them a Try for Your Next Hot Weather Concreting Project?

If you’re expecting to deal with such a project soon, then it might be time for you to find out how advantageous it can be to have Maturix with you. You’ll soon wonder how you could have gone so long without it! But don’t just take our word for it. Check out our Maturix page to see for yourself.

Convenient. Cost-Effective. Remote. Concrete monitoring with Maturix. Book a demo today!

The post Reducing the Risk of Hot Weather Concreting with Maturix® Sensors appeared first on Kryton.

Interview: Why Maturix® Is Contractor Kruse Smith’s Chosen Concrete Sensor

Interview: Why Maturix® Is Contractor Kruse Smith’s Chosen Concrete Sensor

Providing the best results for clients: that’s what most contractors strive for. And Kruse Smith is no different. That’s why the Norwegian contractor has recently started digitalizing their work for the E39 highway project. As part of this process, they took a special focus on technological innovations and how those could improve their on-site performance. That has allowed them to minimize any repetition, time consumption, and labor costs associated with their work while producing more cost-effective and timely end results.

More specifically, it has allowed them to effectively develop the 19 km (11.8 mi) of the E39 project that they are responsible for.

However, the project as a whole is likely to be the largest coastal highway infrastructure Norway has ever conducted. At about 1,100 km (683.51 mi), the project is expected to replace multiple ferry travel points and cut down travel time from 21 hours to just 13.

To optimize their part in this extensive project, Kruse Smith conducted a digital pilot project, enacting innovative changes, such as replacing paper plans with 3D modeling and BIM and using wireless sensors for concrete monitoring.

These wireless sensors (also known as Maturix Smart Concrete Sensors) help optimize Kruse Smith’s work on-site by enabling the contractor to remotely monitor the temperature and strength development of multiple concrete structures in real time. It’s a method that saves them time and money that they would have otherwise spent on physically checking each concrete form.

For more details on how this innovative technology is helping the contractor move forward on the E39 project, the creator of Maturix, Sensohive Technologies ApS, conducted an interview with two members of Kruse Smith’s team, Marius Røksland, and Asbjørn Stålesen.

The interview gave great insight into the use of Maturix in the infrastructure project. And we are happy to add to the conversation, sharing additional interview details on how Maturix helped Kruse Smith in their everyday work.

To talk about Kruse Smith’s work on the E39 project and their use of Maturix, we have two members from their team. Can you tell us a little bit about yourselves?

Marius: My name is Marius Røksland, and I work for Kruse Smith as a project engineer.

Asbjørn: I am Asbjørn Stålesen, and I’m the project manager for the new E39 between Kristiansand and Mandal.

What are you currently working on?

Marius: At the moment, at this jobsite, we are building 19 bridges, completing the new E39 highway. It’s a four-speed, 110-kilometer [68-mile] highway on the coast of Norway, all the way south. It is one of many small stretches of roads that we have been constructing.

For this one, now, we have been working for a couple of years and still have one-and-a-half years to go.

This bridge is about 370 meters long. It’s a dual lane, so we are doing two at the same time.

How far are you with the bridge?

Asbjørn: Currently, we are 90-, 95-percent finished. We have cast all three bridges, but we have some of the small works around them left before we can hand them over to the client.

On this particular project, we have all cast-in-place. We have no precast, and we do this with quite big formworks.

These are 120-meter [393.71-foot] bridges, but we reuse the formworks from one to the other. So we try to do as much of that as we can, but it’s important for us to think industrial scale because we’ve been building so many bridges in such a short time. This is also why monitoring the curing process enables us to move on a lot faster as we know exactly when we can remove the formwork.

What are the challenges of this project?

Marius: The weather is a challenge as it is way too cold. We have problems with ice and snow here in Norway, especially now when it’s so cold. So it’s important for us to know the concrete temperature in the whole bridge and every cast. This has mostly to do with the maximum temperature, but also now in these conditions, we really have to be careful not to have anything freeze until we get the curing.

There are also different aspects, but mostly, that the temperature may not differ too much from the core to the outer edges as the structure can get damaged otherwise. In the current temperatures with the cold, it is a challenge. So we really need to monitor the temperature!

Did you always monitor the concrete temperature in mass concreting?

Asbjørn: It’s always been a requirement that we monitor, but the other systems we used were offline. That means that you go and collect the data and you come back and analyze it.

This also means that in real life, you do this more than one time — maybe once if you’re lucky — and directly get the required result.

Marius: Before Maturix, we used manual data loggers. They were digital, but not wireless. Then, you had to take the sensors, set them up, leave the sensors, cross your fingers, and hope for the best. And then, some days later or some hours later, you have to go back out to the form, check whatever reading there is, collect it, put it into the computer, and see what you actually get.

Asbjørn: So even with the data loggers, it is still very time-consuming to set them up and go get them. Also, you really don’t know what the data looks like until you actually finish the casts and do the analysis. (With Maturix, you get all the graphics and analysis on the screen — live.) And you don’t get any chance of doing something as you progress through the curing process.

That means that you’re not really actively using the data. You’re crossing your fingers and hoping that everything has gone well, and afterwards, you have documentation that it did. It’s a very passive way of working compared to having the data available at all times.

How do you actively use the data?

Asbjørn: So that’s one aspect of it — better active documentation and quality control. Another is, if we forgot something and suddenly there is a change like a temperature drop or some kind of temperature change or another concrete mixture — or if it gets too hot, for instance — or you were expecting to see this curing process start in, say, eight hours, but you didn’t get it until it was 14 hours? Then, we can investigate further why and potentially save time next time by adjusting the mixture or doing some additional work prior to casting.

So, are you using the monitoring data to optimize future casts? Has that influenced internal teamwork?

Asbjørn: Yes. We see that in everyday life, we’re using the data so much more, and discussions around it have been brought up. The temperature data becomes an everyday topic instead of being something that a quality engineer does and documents. And we see that the data has been actively used to improve how we build.

How important is the monitoring data for you, and how do you use it?

Asbjørn: It’s important for us at all levels. For me, as a project manager, it’s important to keep control of all the work going on. We have work in a lot of different sites, and this enables me to keep track of ongoing castings and how they are doing. So basically, we can monitor the situation in real time so that we know what’s going on.

But it’s also important for us in everyday work, where we have control over all the curing processes at a much better level now. And we can much more accurately predict when the concrete is cured and when we can go to the next step.

But it’s also good from a quality aspect. We can use it in meetings and discuss how the castings are going and which areas of concern there might be or how we can adjust for future casts.

Marius: We can check whatever the concrete is doing and share the information with the client. That creates a lot of transparency and trust.

Who has access to the monitoring data?

Asbjørn: Well, we have chosen to share the access to the software with both our clients and third-party members. So everybody has full access to all the data, and the feedback from that is very good! They check the data, and they discuss it with us. We have a very good dialogue with all parties, and we get to share the knowledge of how to improve our quality of work.

It gives a whole new level of trust, showing them that we have nothing to hide. And this is very good to have in a project like this!

So, how easy do you think it would be for someone who has not used Maturix before to get started?

Asbjørn: We’re finding now that it doesn’t take much training at all and that people are really on board. People are really interested and want to use it as much as possible here, and it’s certainly not a system we will go away from.  It has come to stay with us.

Marius: You just take the cable, connect it to the transmitter, start it in the software, and you are ready to go. It’s super easy to get started.

What would you tell someone who is considering Maturix?

Marius: I think it would be better to show them. You get everything that you need, plus a lot more! You get all the data and don’t need to be on-site or do the analysis, so it just is better and quick and easy.

Asbjørn: I’m firmly recommending using the system. It gives you much more insight into what you’re doing. Also, together with your client, it gives you better client relations and a higher quality of work. So in my mind, this is the way forward!

Thank you so much for taking the time to talk with us, and good luck with your work on the E39 project!

The post Interview: Why Maturix® Is Contractor Kruse Smith’s Chosen Concrete Sensor appeared first on Kryton.

Convert Your Concrete Slab from a Maintenance Liability to an Asset

Convert Your Concrete Slab from a Maintenance Liability to an Asset

When you think of concrete, it’s likely not long before you’re thinking about its durability. It’s one of the more well-known advantages of the material. And it’s why many choose to use concrete in construction. After all, no one wants to build with a material that couldn’t withstand the outside elements. So we turn to that concrete durability, relying on it enough to make concrete one of the most consumed materials on the planet, second only to water.

But concrete isn’t invulnerable. Depending on its mix, you could have a maintenance liability on your hands. Luckily, there is a way to avoid that. All it takes is being aware of how you can convert your concrete slab from a maintenance liability to an asset.

Keep in Mind That Slabs Can Be Prone to Wear and Tear

The first step in the right direction is to remind yourself that while durable, concrete slabs can still be prone to wear and tear.

It’s why you look for concrete hardening products. They’re meant to add an extra layer of protection to the concrete’s surface, sheltering it from abrasive and erosive forces that might otherwise degrade the concrete.

You can probably think of quite a few culprits responsible for this wear and tear. But as a refresher, let’s look into the specific types of abrasion and erosion you’re likely protecting your concrete from.

Number of Abrasive Forces Can Cause This

As noted in our latest e-book (which you can download and check out for yourself here), there are three specific types of abrasion-only wear:

Sliding abrasion — Also known as two-body abrasion, it’s what happens when a hard object slides across concrete. As it moves, the hard object will begin to gradually bore into the concrete, removing a bit of its surface each time. So if you have skids or some other item with a hard material moving back and forth over your concrete frequently, you’ll start to notice a rut in its surface.

 

Foreign particle abrasion — For any concrete projects that deal with vehicles, you’re sure to come across foreign particle abrasion. That’s because as the vehicles travel over the concrete, hard particles get trapped between the vehicle tires and concrete surface, and that wears down both materials simultaneously.

 

Rolling abrasion — A common sight in industrial spaces, rolling abrasion is what happens when wheels under a heavy load roll over a concrete surface. These wheels might come from carts, forklifts, or other wheeled equipment. But whichever one it is, over time, their movement over the concrete surface wears that surface out and creates noticeable dips in the concrete.

Erosive Forces Can Also Cause Similar Damage

One of the more common types of erosive wear is actually a combination of abrasion and erosion. And it’s often seen in hydraulic projects.

Why?

Well, these projects are typically ones that are surrounded by fast-moving water, such as dams and spillways. So they are more likely to encounter the abrasive effect of debris in the water grinding against their concrete surfaces. This debris might come in the form of silt, sand, gravel, rocks, or even ice. And while it’s roughing up the surface of the concrete, the surrounding water rushing by is gradually causing the concrete to erode.

A pale door shadowed in darkness stands ajar, showing an alarmingly red room past it.

That Can Open the Door to Various Costly Risks

If either abrasion or erosion starts to seriously affect your concrete to the point that you can see the damage, it can create a safety hazard, disrupt operations, and increase maintenance costs.

For Floor Slabs, That Can Involve an Increased Danger of Slipping, Tripping, and Falling

All those dips and ruts in concrete flooring caused by abrasive wear? They can pose a threat to your team’s personal safety.

While for a time, you might be able to work around the uneven flooring, you or someone else on your team is inevitably going to slip, trip, or fall. In fact, it’d be close to a statistical anomaly if you didn’t! Slips, trips, and falls make up a third of lost-workday injuries according to the Centers for Disease Control and Prevention. And as EHS Today notes, the primary cause for more than half of these injuries is due to an issue with a walking surface. So you can imagine the risk you take with keeping that uneven floor!

The cost of not implementing preventative measures for this kind of risk for businesses in the United States of America (USA) alone is about $70 billion a year overall in compensation and medical fees for workers.

For Road Slabs, That Means Traffic Accidents

Similar to how uneven flooring can pose a risk to people walking over it, uneven roads can be a risk to those driving.

Initially, that unevenness might be a slight difference in road surface from all that foreign particle abrasion. But eventually, that slight dip might lead to potholes or a fully uneven road. It also increases tire wear, making the vehicles on the road less efficient and safe to use.

All of which increases the risk for roadway accidents. Potholes on their own cause around $3 billion in vehicular repairs annually in the USA. And in Canada, each year, the cost for drivers as a whole is increasing by that same amount because of increased vehicular repairs and maintenance and general vehicular damage due to poorly maintained roads.

Hazards like potholes pose an even greater risk for those on motorcycles and bikes.

Those on motorcycles, according to the Motorcycle Safety Foundation, may crash when encountering potholes. That can be a significant concern as motorcycle incidents have a 29% higher fatality risk than ones that occur with automobiles and light trucks.

For cyclists, they can end up with permanent nerve damage. But that’s not the worst-case scenario. Much like those on motorcycles, cyclists have a higher fatality rate when it comes to crashing. For instance, since 2007, in Britain, potholes alone have killed at least 22 cyclists and seriously injured another 368.

The Potential Damage Doesn’t Stop There Either

Of course, worker injuries and vehicular damage aren’t the only costs to consider when facing abrasion and erosion damage. You also have productivity, equipment, and structural loss to worry about.

For instance, workers operating forklifts on an uneven surface are likely to drive more slowly to avoid tipping over, reducing worksite productivity. And if they don’t? You’ll likely be paying to repair or replace that forklift and any items it happened to be carrying.

Using fully automated equipment won’t do much to overcome this obstacle on its own either as an uneven surface can prevent it from operating properly.

And what about structures? With enough abrasion and erosion, owners will have to close down for repairs and replace large sections of concrete structures, from floors all the way to hydro dams. All of which is extremely costly to any business and doesn’t endear owners to the concrete they used.

A construction worker is adding Hard-Cem into his concrete mix during batching.

But Your Concrete Slab Doesn’t Have to Be a Maintenance Liability

You just need an effective concrete hardening solution.

Your first thought might be to use conventional surface-applied concrete hardeners like dry shake hardeners or liquid hardeners. However, those come with a number of setbacks.

Dry shake hardeners, for one, come with a complex application process. It’s not a one-and-done deal. Instead, a worksite team has to prepare the worksite first. That means removing excess concrete and preparing the remaining concrete. Then, depending on your chosen hardener’s material, you may have to take an extra step and use a wood bull float and then a machine float. After that, the team can finally move on to actually applying the dry shake hardener, which will cover a couple millimeters of the concrete’s surface.

However, even that part isn’t without complications. Dry shake hardeners can only be applied during a specific time and type of weather. Pick the wrong time and you can end up with delaminated concrete or an inability to even apply the dry shake.

At the same time, this hardener makes use of a toxic material known as silica dust, which means a worksite team needs to meet the proper safety measures to keep workers safe and comply with legal restrictions.

On the other hand, while not as frustrating to apply or as hazardous as dry shake hardeners, liquid hardeners are often misrepresented. They were first sold as dust reducers to help with defective concrete slabs that had a dusty surface. But now, they’re expected to harden concrete, which they do very poorly.

(For more reasons and data on why these aren’t effective solutions and more, take a look at our e-book on the topic!)

So, what can you use instead?

pply Hard-Cem to Increase Your Concrete Slab’s Resistance to Wear and Tear

Unlike any other concrete hardener on the market, Hard-Cem is an integral hardener. That means it applies its hardening properties throughout a concrete mix to form one solid abrasion- and erosion-resistant material. Essentially, it’s an admixture that you add into the concrete mix during batching. At that time, the admixture will permeate the entirety of the mix, giving it a harder concrete paste and reducing fine and coarse aggregate exposure. It does all this to help the concrete effectively resist abrasion and erosion.

Your Concrete Slab Will Gain Many Other Benefits as Well

More specifically, when using Hard-Cem, you’ll double the wear life of your concrete.  Because it does last that long and can resist abrasion and erosion, Hard-Cem-treated concrete comes with fewer maintenance fees. So you won’t need to resurface or replace your concrete as often. And you won’t need to use as much cement. That can increase your savings on carbon emissions by as much as 40%!

In some cases, this has even helped construction teams earn LEED certifications.

All you need to do to get these advantages is to throw the admixture and its dissoluble bag into the concrete mix during batching. There are no extra application steps, toxic silica dust, or inefficiencies to worry about. So you don’t have to spend money or time on hiring extra labor or managing application errors. Hard-Cem does all the heavy lifting, giving your mix the thorough durability it needs as soon as it’s added.

Hard-Cem also offers incredible versatility. It can work for a variety of projects and help harden horizontal, vertical, and inclined concrete. And it is the only hardener capable of being used for air-entrained concrete.

In short, it increases your concrete’s durability, speeds up your construction, reduces application costs, provides universal compatibility for different concrete mixes, and makes it all more sustainable.

A construction worker is guiding concrete mix down into the area it needs to be poured in.

It Just Takes the Right Concrete Mix Ingredients

With Hard-Cem added into your concrete mix, your concrete slabs will be an asset to your project. They’ll need less maintenance over the years, help you reduce your carbon emissions, and most importantly, keep abrasion and erosion at bay to keep your concrete structures standing for as long as possible.

Download our e-book today to find out why the industry is moving away from surface-applied concrete hardeners.

The post Convert Your Concrete Slab from a Maintenance Liability to an Asset appeared first on Kryton.

Did you miss our previous article…
https://cedarparkconcrete.org/?p=246

Silica Dust: The Dangers and How You Can Mitigate Them

Silica Dust: The Dangers and How You Can Mitigate Them

While it doesn’t look like silica dust is going away anytime soon, you may want to consider using an alternative material for your worksite when possible. After all, regulations in the United States of America (USA) are starting to get tighter. And it’s possible those restrictions will become the norm for other countries too.

In fact, just last year, the USA’s Occupational Safety and Health Administration (OSHA) launched a national emphasis program on the material. It’s an initiative that’s meant to restrict silica dust exposure due to the risk it can pose for workers in a number of industries. As a result, you can now expect more inspections on your management of the material. And if your management doesn’t follow the updated regulations, you could face monetary penalties from $5,000 up to $70,000.

Not long after these restrictions were implemented, the inspector general for the U.S. Department of Labor argued for stricter standards for silica dust management in mines. Those included making use of more frequent silica sampling protocols and issuing citations and fines for excess silica dust exposures.

Similar plans for stricter regulations were approved in 2019 in Australia. The hope was to limit the silica dust exposure that stonemasons in the country experience. While regulations were tightened to a degree, they weren’t tightened as much as planned as there was concern over giving businesses enough time to meet the new compliance requirements.

But why is there such resistance? What makes silica dust so appealing and concerning at the same time? Is there no way around this infamous construction material?

To get a better understanding of the situation, we’ll take a deep dive on the subject. Join us as we delve into why silica dust is popular, what makes it dangerous, and how you can minimize its usage.

Hard to Avoid, Silica Dust Comes from a Number of Helpful Construction Materials

Whether we like it or not, silica dust comes from a very common mineral. Known just as silica, this mineral is found throughout the earth’s crust. It can come in two different forms: crystalline and noncrystalline silica. That first form is the one we often call silica dust. And it comes in a form of its own known as quartz. It too is also easily found throughout the world as it’s a basic component in sand, gravel, clay, granite, and various rocks.

As you can probably already tell, that means silica dust can be pretty hard to avoid. It’s in a lot of basic construction materials:

ConcreteCementMortarTilesBricksRock- and stone-based asphaltBlasting abrasives

All of which are often the building blocks to a wide variety of construction projects. They help construction workers create buildings, warehouses, and many other structures.

In some cases, silica dust can even be found in products that are meant to help protect structures. That includes surface-applied concrete hardening products like dry shake hardeners.

It’s what makes it so difficult to avoid silica dust. It’s part of our essential building materials, helping to make it possible to construct projects in the first place.

A woman and a man in construction clothes are running upstairs through dust while coughing at a worksite.

But Its Help Can Come at a Serious Cost

So long as people don’t create dust with those materials, they’re fine. The crystalline silica just remains within the material, harmless to people nearby. In return, people can safely reside within durable concrete buildings, stand on nice cool tiles in their bathroom, and so on.

However, that’s not often the case during the construction of those structures.

It May Be Stable When Left Alone, but Once Agitated, It Becomes a Problem

Construction activities of all kinds can often kick up dust. These include, but are not limited to, the following:

ChippingSawingDrillingDemolitionAbrasive blastingTunnelingExcavating

Once those activities do start up and move some dust around, there’s a problem. That’s when it’s possible for crystalline silica to become dangerous and interact in ways it shouldn’t with our health.

That Makes It a Health Risk for Anyone Nearby

Essentially, as soon as silica dust is in the air, there’s a risk for people nearby to inhale it. Why a risk? Well, silica dust is a known carcinogen, meaning it can cause cancer in people. More specifically, silica dust is known to spur on the development of lung cancer. And that isn’t the only disease it can lead to. It can also cause people to develop kidney disease and chronic obstructive pulmonary disease.

After inhaling silica dust, people may even develop silicosis, which is particularly dangerous as there is no test for it. You can’t even easily define the signs of silicosis. Its symptoms match many other diseases after all. And you can’t recover from it either.

However, silicosis only tends to occur after you’ve been exposed to silica dust for 10–20 years. That may seem like a more manageable risk level to you. But keep in mind that if your exposure is intense enough, you could develop silicosis after 5–10 years or even after just a few months of exposure. And that’s only for this one particular disease!

In fact, it doesn’t take much silica dust at all to be a threat, whether you’re exposed to it over the years or within a day. That’s why OSHA limits a person’s permissible exposure level to silica dust to 50 μg/m3 over an eight-hour day.

A dust suppression truck is traveling through a road surrounded by green trees while spraying water to suppress dust.

Many Try to Mitigate the Damage of Silica Dust

Despite its risk, silica dust is still necessary for certain areas in construction. That’s why construction sectors and work safety organizations around the world take silica dust safety seriously. As a result, they typically apply the following safety measures and more to manage the application of the material in a responsible way that’s designed to keep construction workers and the overall worksite as safe as possible.

Part of That Includes the Use of Engineering Controls

These measures are designed to eliminate hazards like silica dust before workers come into contact with them. It’s what makes them more favorable than other measures like administrative controls and personal protective equipment (PPE). However, that’s also what can make them a bit more costly at the start. In the end, though, these controls are always good to have in the long run. While initially costly, over time, they’ll reduce operating costs for construction teams and keep them safe and healthy at the same time.

So, how does this work for silica dust?

There are a number of engineering controls that can be used against silica dust. These include the following:

Dust suppression — To prevent as much dust as possible from stirring at all, workers might choose to use water sprays. These might be sprays that can be attached to a tool like a pneumatic, hydraulic, or gas-powered saw. Or they might be sprays that form a curtain of water to protect a specific area from airborne dust particles. In either case, the idea behind it is that once dust particles come into contact with water droplets, they become heavier and are less likely to float in the air and pose a threat to workers.

Ventilation — When workers are agitating silica dust, they can use local exhaust ventilation to suck the dust away before it reaches their breathing area. For instance, if they are using hand-held cut-off saws to cut concrete, they can connect an exhaust hood (also known as a shroud) to the tool first. The hood is connected to an industrial vacuum cleaner with a flexible hose, which allows it to produce enough suction to capture the silica dust.

Industrial vacuum cleaning — Much like with portable ventilation, workers can suck dust away from areas through high-efficiency particulate air (HEPA) filtering vacuums. There are a variety of HEPA vacuums to choose from, including stationary, intermittent-filtering, and continuous-filtering models. So the efficiency of dust suppression with this method will depend. Though, workers should use one that has oversized filters. That allows the vacuum’s filtration system to collect a lot of dust and debris for a longer period than a vacuum with smaller filters.

dministrative Controls Also Come into Play

While not as favorable compared to engineering controls, administrative controls can be combined with them for extra protection. Under these particular controls, a construction team will determine the right work procedures that allow workers to do their job well and safely.

According to the Canadian Centre for Occupational Health and Safety, that can include implementing the following practices:

Worksite education — Without proper knowledge of silica dust, workers could have an increased risk to getting hurt while working near the material. To prevent that, it’s important all workers know what silica dust is, why it’s a threat, and how they can reduce that threat to a manageable level.

An exposure control plan — On top of worksite education, a construction team should have an exposure control plan. That ensures they will have a handy reference at their disposal that outlines the proper directions and expectations for preventing silica dust exposure.

Proper washing facilities on-site — To keep silica dust from spreading too far from the worksite, workers need to make sure they aren’t heading home in a cloud of the material. That might sound a little tricky, but all this requires is proper washing facilities at the worksite. These should provide clean water, soap, and individual towels. That way, each worker has the opportunity to effectively remove any dust around them.

nd for Extra Good Measure, Workers Have PPE

Similar to administrative controls, PPE is more effective when combined with engineering and administrative controls.

But this all depends on the equipment used! Some may find it easier to whip out a disposable dust mask and wear it. As the National Precast Concrete Association notes, it’s likely to be less hot to wear and easier to talk through than respirators approved by official safety authorities like the National Institute for Occupational Safety and Health (NIOSH). And with the word dust in that name, it sounds like it might protect workers from silica dust, right?

Well, unfortunately, that’s just not the case. Disposable dust masks are not NIOSH-approved. And they aren’t meant to really protect people from toxic substances. They’re actually better used as a way to stay comfortable while mowing grass or sweeping or dusting an area.

That’s why you want to go with an officially recognized and approved respirator. It’s designed to protect the wearer from all sorts of airborne contaminants, such as hazardous dusts, fumes, vapors, and gases.

On top of that, workers should also wear overalls and gloves to protect the rest of their body from coming into contact with silica dust. It also makes it easier for them to leave the dust at the worksite as they can simply strip off that uniform, leave it for cleaning on-site, and go home in their non-dusty attire.

A construction worker is surrounded by Hard-Cem bags and is holding one while preparing to add it to the concrete mix during batching.

But There Are Also Substitutes for Silica Dust to Minimize or Eliminate Its Use

You don’t always need to deal with silica dust or with as much of it as you might think. In fact, there are some great silica dust-free alternatives that you can use to keep your worksite just that much safer.

For a Silica Dust-Free, Non-Toxic Concrete Hardener, Look to Hard-Cem

It may be more conventional to harden your concrete with products like dry shake hardeners. But those often come with silica dust.

Luckily, you can eliminate this concern entirely when you use Hard-Cem. It’s free of silica dust. And as the only integral hardening admixture on the market, Hard-Cem has the unique ability to enter a concrete mix directly. Because of that, you don’t need to hire extra labor to apply it or have to worry about it not covering your concrete completely. You just add its dissoluble bag into the concrete mix during batching and let it permeate throughout the concrete. That gives the concrete full-depth hardening and increases its resistance to abrasion and erosion.

In return, you get concrete with double the usual wear life and a much more durable surface. That allows you to minimize the number of repairs or replacements you otherwise might need, which also reduces how much carbon your project emits.

There Are Also Many Other Substitutes for Different Applications

Of course, silica dust doesn’t just help with concrete hardening at times. It also helps with many other construction activities. So what can you substitute silica dust with for those?

While that may not be possible for every activity, you can substitute silica dust in the following activities:

Abrasive blasting — OSHA lists a number of silica dust substitutes for abrasive blasting materials. These include aluminum oxide, baking soda, coal slag, copper slag, and corn cob granules.

 

Precision grinding — The Workers Health & Safety Centre in Ontario, Canada, notes that grinding (also known as abrasive cutting) in construction can be done without silica dust. Instead of using sandstone grinding wheels, workers can use aluminum oxide wheels.

Two construction workers are working on top of a partially constructed concrete structure.

Silica Dust Doesn’t Have to Be a Problem at Your Worksite

It may feel like it’s everywhere (and in some cases, it certainly can be!). But you don’t have to put up with silica dust all the time. There are ways to not only mitigate its potential for damage but to also remove it entirely. Whether you choose to harden your concrete through Hard-Cem or use other alternatives, you can minimize the silica dust at your worksite, keeping workers safer and your worksite just as, if not more, productive.

Click here to find out why the industry is moving away from surface-applied concrete hardeners.

The post Silica Dust: The Dangers and How You Can Mitigate Them appeared first on Kryton.

How Combining Concrete Admixtures Simplified Aquatera’s Expansion

How Combining Concrete Admixtures Simplified Aquatera’s Expansion

Ever thought about what it takes to keep the water you drink and the water you see outdoors clean? It’s not often considered! But there are companies who work tirelessly to make it all happen. Aquatera is one such company. Since 2003, they’ve acted as the owner and operator of water and wastewater treatment and transmissions systems for the City of Grande Prairie in Alberta, Canada.

Under their direction, Grande Prairie’s citizens have been able to enjoy safe, clean drinking water and ensure that their wastewater returns fully sanitized back to the Wapiti River. It’s a direction that worked for a decade.

However, by 2013, Grande Prairie’s population had grown by more than 18,000 people. While that was great for the area’s economy, it left Aquatera’s plant running at full capacity. If the population grew any further, the plant would not be able to accommodate the increase in demand.

Determined to leave no person without their essential service, Aquatera chose to expand their plant.

quatera’s Expansion Would Involve Multiple Additions to Their Plant

It would also cost a pretty penny! For over $58 million, Aquatera would be able to fully upgrade the plant to include the following:

Two new biological nutrient removal reactors (BNRs)Two new circular secondary clarifier filtersA new centrifuge building

While this upgrade would be expensive, the end result would be priceless. These additions would give Aquatera’s plant two major benefits that would keep it running throughout Grande Prairie’s ongoing growth spurt.

They Would Help the Company Meet Current and Future Regulations

As a company that handles the water and wastewater treatment for a whole city, Aquatera is beholden to a number of rules and best practices. These come in the form of provincial and federal regulations and guidelines. And they also include individual municipal utility bylaws from four shareholders.

Of course, it also means that Aquatera needs to periodically update their system to meet the latest standards. Taking that into account, Aquatera knew they’d need their upgrade to address this. That’s why they chose to add two more BNRs to their plant. Both would allow them to satisfy the needs of Grande Prairie and meet current and future regulations surrounding those needs.

nd They Would Also Increase the Company’s Overall Efficiency

More importantly, all of the additions to Aquatera’s plant would give it the ability to work more efficiently. For instance, the plant would be able to treat 12,000,000 more liters of wastewater a day than it would have before. To put that into perspective, the plant’s original capacity limited the plant to treating 22,000,000 L of wastewater a day. But with the upgrades, the plant would be able to treat up to 34,000,000 L daily.

On top of that, the upgrades would also increase the plant’s sustainability. They would give the plant a longer life span while reducing how much power it consumes and how many greenhouse gases it emits.

Combining this new capacity increase and sustainability enhancement meant that the plant would be able to work in a more eco-friendly manner while having the capacity to serve a growing population.

A civil engineer is holding up blueprints while in snowy weather, determining how they'd want to use their concrete admixtures.

But These Upgrades Came with a Couple of Challenges

While Aquatera was eager to start upgrading, they had to make sure their construction team would be able to complete the project on time while working in Alberta’s harsh wintery conditions.

With that in mind, it was clear to them that working with concrete in such a climate meant they’d need a time-effective solution that could give them both permanently waterproof and highly durable concrete. And this solution would need to be able to handle significantly cold temperatures over the winter season. In short, it would have to be an innovative solution.

They Couldn’t Go with a Conventional Surface-Applied Solution

Traditional solutions like surface-applied concrete waterproofing and hardening products are costly and time-consuming. After all, crews need to be scheduled to handle the application. And that can involve the need to spend more to hire extra workers and expensive equipment. Even if all those costs could be managed, it still means waiting for the workers to finish their manual application.

At the same time, that process adds the risk of application errors. No matter how well trained a manual applicator is, they’re only human. So there’s always a chance that the application will not uniformly cover the concrete. And that could leave weak spots in the finished concrete structure.

If Aquatera wanted their concrete waterproofing and durability solution to be both timely and cost-effective, they would need to look elsewhere.

They’d Also Need to Be Careful of the Weather

No matter what they chose as their solution, the construction team would still have to make sure that it could handle the wintery weather. With surface-applied solutions, that could prove to be difficult. It would double the amount of heating they’d have to worry about after all. Both the solutions themselves and the surrounding ground would need to remain unfrozen. Otherwise, the cold weather would interfere with the process, making the concrete set more slowly. That in turn would make the surface application take even more time. There would even be the possibility of the concrete slab crusting, where only its top part sets.

So, if Aquatera’s upgrade was ever going to happen, the company’s construction team would need a non-surface-applied solution that could handle the cold weather just fine.

Kryton's KIM and Hard-Cem admixtures ready to optimize building space.

To Manage These Obstacles, Aquatera Chose Smart Concrete Solutions

The main challenge for Aquatera was eliminating the difficulties that come with surface-applied products. Luckily, they soon came across Kryton’s Edmonton distributor, Cascade Aqua-Tech Ltd. From there, they were able to secure their very own supply of our integral concrete waterproofing admixture, Krystol Internal Membrane
™
(KIM), and our integral concrete hardening admixture, Hard-Cem

Using the Concrete Admixtures KIM and Hard-Cem, They Were Able to Ease Their Construction Timeline

Because both KIM and Hard-Cem are integral admixtures, they can be added directly into a concrete mix. That eliminates the need to hire extra labor to apply waterproofing and hardening solutions. There’s also little concern for application errors. Instead, each admixture will permeate throughout the concrete, giving it an even, thorough dose of waterproofing and hardening.

The construction team benefited from this approach, adding the products to the concrete mix to meet the specific needs of the wastewater treatment plan.

For KIM, they started by adding it separately to the following:

Some slabs and retaining walls for the gallery and tunnel raftExposed structural concrete that was covering the first two structuresA raft slab and some compartment walls for the BNRs and circular secondary clarifier filters

That allowed KIM to protect each area from potential chemical attacks as the Krystol technology within the admixture could form interlocking crystals that block out water and waterborne particles and fill up any spaces that either might pass through.

For Hard-Cem, they added it separately to the centrifuge building’s slab-on-grade. That would double the building’s resistance to abrasive and erosive wear so that it could withstand the exposure to chlorides and severe amounts of sulfate from the wastewater treatment process.

And for extra protection for the plant’s steel deck, the construction team added both KIM and Hard-Cem to the concrete mix, giving the deck’s surrounding concrete protection against moisture ingress, chemical attack, and abrasive and erosive wear.

Even When Weather Conditions Worsened, Their Construction Still Went By Relatively Smoothly

Because of how easy it was to apply these concrete admixtures, the construction team was able to diligently and effectively continue their work throughout two snowy winters — even when one winter came with a snowfall that was over 10 ft!

Such weather would have made it harder to work with surface-applied concrete waterproofing and hardening solutions as the solutions themselves would have needed protection from the cold.

But with the instant application of concrete admixtures KIM and Hard-Cem, where they can be directly added to the concrete mix during batching, it made it easy for the construction team to both waterproof and harden their concrete. There was no concern over protecting the admixtures after all. The admixtures would simply go into the mix and provide their benefits while the team could carry on with heating the ground and properly placing and curing their concrete.

Aquatera's worksite rests in the background of the shot, showing a more complete project.

Overall, KIM and Hard-Cem Transformed Aquatera’s Expansion into a Success 

In the end, thanks to the concrete admixtures, KIM and Hard-Cem, Aquatera’s construction team was able to upgrade the wastewater treatment plant within their timeline. It was a successful bit of construction that was only further proven to be so when the upgrades passed every hydrostatic test the team put them through.

Both KIM and Hard-Cem have gone on to contribute to many other success stories like this one. If you want to see more of their work, take a look at our library of case studies.

Download our e-book today to find out why the industry is moving away from surface-applied concrete hardeners.

The post How Combining Concrete Admixtures Simplified Aquatera’s Expansion appeared first on Kryton.

How are Elevated Concrete Slabs Poured?

How are Elevated Concrete Slabs Poured?

Elevated concrete slabs (also known as suspended concrete slabs) are most commonly found in commercial offices, parking garages, and other multistory heavy-use buildings. 

These pours require a bit more skill than your everyday residential concrete driveway and will need to be carried out by a professional contractor

Multiple factors are involved in pouring elevated concrete slabs, including the weight of the floor and the effect any additional loads will have on it. 

This is how it’s done.

1. The supporting walls are built according to the structural plans

The first step in pouring an elevated concrete slab involves building the supporting walls according to the structural plans. These walls can either be created out of reinforced concrete or concrete blockwork.

2. A crane is used to lower the metal into place

After the supporting walls have been constructed, a metal slab pan is lowered into place using a tower crane. This pan will be used as the framework for pouring and forming the elevated concrete slab. You can also use a system of connected preformed concrete panels instead.

3. Reinforced steel mesh is laid into the pan

Before the concrete is poured, reinforced steel mesh is laid into the pan and is lifted slightly off the floor using chairs (small metal supports) that are evenly spaced apart. This step is what gives the floor the strength necessary to support itself. 

In larger buildings, precast concrete floors that’ve been previously reinforced with tensile steel bars might be required for maximum strength. 

4. The concrete is poured and cured

Finally, after everything has been laid out and arranged according to plan, the concrete is mixed and poured in agreement with the structural engineers’ recommendations. 

The slab must then be left to cure for at least 48 hours before anyone can walk on it. The time it will take before anyone can park or drive on it will vary depending on several factors.

At Port Aggregates, our skilled contractors have over 40 years’ worth of experience built into our tried and trusted techniques. Whether you’re looking for a residential driveway, commercial suspended slabs, or precast concrete, we’ve got you covered. Contact us today to request a quote

The post How are Elevated Concrete Slabs Poured? appeared first on Port Aggregates.

Did you miss our previous article…
https://cedarparkconcrete.org/?p=218

Rip Rap: The Original Rock Wall

Rip Rap: The Original Rock Wall

If you’ve ever walked along a shoreline or under a bridge, chances are that you’ve seen what’s called rip rap

This rocky material is a form of crushed limestone that comes in a range of sizes. It can be anywhere from 4 inches to over 2 feet in width, depending on how fast the surrounding water moves and the steepness of the slope that it will be placed upon.

What Does Rip Rap Do?

The main purpose of rip rap is to prevent erosion on a pond bank, hill, or slope. Without this protection, roadways wash out, bridges become compromised, and property gets lost.

However, erosion prevention is not its only benefit. 

Contractors prefer rip rap because of its extreme durability and natural appearance. The reliability and affordability of this material make it the ideal choice for protecting bridges, pilings, shorelines, and streambeds from damage caused by water and ice.

Rip rap also buffers the impact of waves crashing against the shore and the force of water against the bank. In these cases, a larger grade (like our #1x4G) is installed over a textile for ultimate protection.

Where Can Rip Rap be Used?

Rip rap is most useful to structures or shorelines that are continuously exposed to rushing water. For example: near a bridge that’s located alongside an embankment, adjacent to waterway supports, and along a lake shoreline or the outer bank of a river bend.

It can also be used to build low-lying dividing walls or planting areas. In really steep slopes or high drainage areas, wire mesh or chain link is needed at the base of the decline to hold the rip rap in place.

At Port Aggregates, we offer three types of rip rap:

10lb rip rap (6-10”)30lb rip rap55lb rip rap

Regardless of whether you’re looking to prevent bridge erosion or simply trying to build a garden, we’ve got you covered. Our high-quality crushed limestone is available in a variety of shapes and sizes to meet your unique needs. Contact Port Aggregates today to request a quote

The post Rip Rap: The Original Rock Wall appeared first on Port Aggregates.

Did you miss our previous article…
https://cedarparkconcrete.org/?p=215

3 Benefits of a Stamped Concrete Patio

3 Benefits of a Stamped Concrete Patio

After last year, we can all use a little extra fun this summer.

Not ready to go out yet? No worries!

By adding a patio to your backyard or enhancing your current one, you can bring the party straight to your house.

A stamped concrete patio is one of the best investments you can make this summer for a few reasons:

1. The material is unmatched

Compared to other popular choices like wood or pavers, stamped concrete is substantially more durable, easier to install, and requires a lot less maintenance. Not to mention, it can mimic the appearance of any other material at the most budget-friendly price on the market. 

2. It can be made to match any style

The stamped concrete process is pretty self-explanatory. It gets its appearance through specially-designed rubber roller stamps that are pressed into the wet material. Whether you want your slab to look like tile, wood, brick, or precious stone, it’s all possible. 

The options are truly endless with this type of concrete. Using stains, dyes, colored epoxy finishes, engravings, and overlays, your patio can be made to match any color scheme and incorporate any special logos, designs, patterns, or other features. 

3.  It opens up the door to so many possibilities

A stamped concrete patio can transform your yard into the ultimate summer fun space. Have you always wanted an outdoor kitchen? Are your kids fantasizing about roasting marshmallows over an open fire this summer?

All of this is possible when you have a beautiful outdoor space to gather. No matter what your style or taste is, you can make your dreams come true with a stamped concrete patio. 

Don’t let COVID steal another summer. Turn your home into the ultimate staycation resort with decorative concrete! At Port Aggregates, we’re here to help you create the perfect concrete patio to match your unique taste.

With more than 40 years in business and 24 locations across Louisiana, our contractors are well-versed in decorative concrete installation and design. Contact Port Aggregates today to request a quote

The post 3 Benefits of a Stamped Concrete Patio appeared first on Port Aggregates.

What can Precast Concrete be Used For?

What can Precast Concrete be Used For?

Known for its immense strength, durability, and endurance, concrete is the number one building material in the world. It’s been used for centuries and can last for thousands of years.

There are several different types of concrete, but today we’re going to take a look at precast and its many uses. 

What is precast concrete?

Precast concrete is formed using a mold and is often used to create columns, beams, or parking curbs. It can be produced in mass quantities due to specifications and codes that are already established. This building process is extremely efficient, allowing for hundreds of large structures to be built in just a few weeks.

The purpose of precast and its many uses

Precast concrete is built above the ground and can be used to stabilize large pieces of earth or hold back dirt. This makes it a great choice for building large retaining walls or smaller retention ponds. 

Three-sided bridges and box culverts for marshland and stream crossings also call for precast concrete. A strong material is particularly essential for structures like these. Otherwise, traveling over this type of land would be impossible without damaging the environment. 

In certain cases, custom pieces can even be made to meet your unique needs; for example, creating a vault using more than one piece when preexisting blockages are in the way. In these circumstances, individual precast panels are constructed and the vaults are then pieced together in place. Other custom examples may include railroad crossings or boat ramps.

Precast concrete is also used to construct buried infrastructure like catch basins, manholes, and vaults. These structures can be used to house telecommunication or electrical junction boxes, move storm water or sewage, and retain water.

Understanding the benefits

One of the biggest perks of precast concrete is that it’s ready to install when you are. This is one of the main shortcomings of site-casted concrete, because weather can delay the pour. Because precast concrete is created within a controlled environment, this is not an issue.

Another major benefit is the fact that strength-testing has already occurred before delivery day. Site-casted concrete, however, requires extra time and effort on the day of the pour to add rebar, set forms, and monitor the product.

When it comes to the production of precast concrete, the process alone is extremely sustainable. At Port Aggregates, all of our concrete products are made with the highest quality materials. It’s why we’ve been trusted for over 40 years! Contact us today to request a quote

The post What can Precast Concrete be Used For? appeared first on Port Aggregates.

How to Remove Stains From Concrete Flooring

How to Remove Stains From Concrete Flooring

One of the biggest concerns that people have when it comes to concrete flooring is how to clean it efficiently.

Fortunately, removing stains from a concrete floor is not nearly as difficult or complicated as it sounds. 

Here are a few stain removal tricks to help you maintain spectacular looking concrete floors.

Removing paint stains

Timing is everything when it comes to a paint stain on concrete flooring. For the best results, it’s critical to act as quickly as possible. 

For a fresh spill, start by putting on goggles for eye protection, then mix together one cup of trisodium phosphate (TSP) with four liters of hot water. Pour the mixture over the paint, scrub it with a long brush, and pressure rinse it until the stain is removed. 

Unfortunately, if you’re dealing with a very large spill, there may always be a slight hint of color left on the concrete.

Removing oil

Oil stains are some of the ugliest, most stubborn stains out there. If possible, try to absorb the oil as soon as you notice it so that it doesn’t penetrate into the concrete. 

Believe it or not, your best bet against a fresh oil stain is to pour cat litter or mud over it, then scrub with a stiff brush or broom. Leave the cat litter or mud on top of the stain for at least an hour before sweeping it away. For tougher stains, leave it overnight.

If this doesn’t completely do the trick, mix together one cup of TSP with hot water, then pour this on top of the stain. Let it sit for at least 30 minutes before scrubbing with a rigid nylon brush and hosing it off with pressurized water. 

Removing mud

When mud is left for too long on concrete flooring, it can leave an ugly brown stain. Fortunately, this is one of the easiest stains to remove. Simply mix together some dishwashing detergent and warm water into a spray bottle, shake it, and squirt it over the stain. Let it sit for around 10 minutes, then scrub it off with a nylon brush and rinse with a high-pressure hose.

Removing rust stains

Unfortunately, rust stains on concrete are quite difficult to remove entirely. Large, old rust stains often require a special rust remover. But for smaller, newer rust stains, using vinegar is your best bet. 

Just pour it on the stain, let it sit for at least 10 minutes before scrubbing with a nylon brush, and its acidic properties will eat away the rust. Rinsing and repeating may be required. 

Looking for more tips on concrete and how to clean it? Check out the Port Aggregates blog

The post How to Remove Stains From Concrete Flooring appeared first on Port Aggregates.