(Urban) Food Forest

(Urban) Food Forest

Agriculture nowadays is one of the most harmful industries in the world. It is estimated that around one quarter of the world’s emissions is coming from this sector (1). If we were able to transform today’s techniques into a mindset and strategy that rather than exploiting the environment even has a positive impact on nature, we would be able to start regenerative processes on a big scale. 

“We have disconnected ourselves from life on the planet, thinking that we are the intelligent ones.
But can’t see that we are just part of an intelligent system.”
from Ernst Götsch

Food…what?

A food forest, also called an edible forest garden, is a cultivation method that is inspired by a natural forest system and inhabits a large number of plants, ranging from vegetables and berry bushes to big fruit trees. Food forests benefit from the symbiotic interplay of the different plants and thus offer a large variety of crops without the need for intensive maintenance.


Pictures from Silver Leaf Farm, Skala, Greece
© Southern Lights Project

What is a food forest?

Conventional cultivation and gardening methods are exactly the opposite of what make the forest system work. In order to make the harvest easily accessible with large machines, only one species is cultivated in separate rows in each field. All dead organic matter is cleaned up and the missing nutrients are added through fertilizer or chemicals.


Plants disposition in a monoculture orange field
© Southern Lights Project

In a natural forest, plants automatically take up the space that is most suitable for them to receive the resources they need. Doing so, they also create or improve the habitat for other plants. The result is a deeply interwoven network of very different and complementary species benefiting from each other. Organic matter deriving from the plants and the plant’s fruit plays a crucial role in this circle. Left on the ground, it stores humidity and prevents the soil from drying out while it decomposes to nutrient-rich soil. In ideal circumstances, no human measures like additional nutrition or irrigation are required to keep this system working. The idea of ​​a food forest is not to reproduce a natural forest exactly but to have it as a guiding model for creating a resilient and productive structure that is adapted to our needs. This concept shows how the basics of the forestial system can be applied to agriculture. It mimics the main principles of a forest and consists of perennial trees and plants that provide food. They are planted in such a way that the layer they occupy in their original habitat is respected, providing the ideal conditions in regards to sunlight (2). Every operation is done in order to reach an energetic positive balance in the system, so the system regulates itself.


Pictures from Silver Leaf Farm, Skala, Greece
© Southern Lights Project

What are the impacts of a food forest?

On the one hand, a food forest rewards its creators with many advantages. Similar to natural forests, human intervention can be reduced to a minimum because the system is mainly self-regulating. With a well-designed system also the harvesting process is not necessarily more time-intensive than in monoculture. On a smaller scale, where a food forest is mainly used for self-sufficiency, the variety of products supports a healthy and balanced diet. On a larger scale, this variety of products spreads the financial risk across many types of income opportunities by breaking the dependency on one crop only. In addition, the positive impact of cultivation led by food forest principles goes far beyond personal advantages. It does not just enrich the local biodiversity of plants, but by creating a natural habitat it also increases the diversity of animals, especially insects. Farming in a food forest way can kick-start and facilitate processes to save and recreate endangered ecosystems. Furthermore, as the enriched soil, the organic matter, and the plants keep humidity and bring shade, a food forest has an enormous impact on balancing the microclimate. Thinking big, the wide-spread use of food forest principles in agriculture could lead to a considerable effect on the climate.


Lizard Eggs
Pictures from Silver Leaf Farm, Skala, Greece
© Southern Lights Project

The key principles of the food forest

Disposition of plants

The design of a food forest garden requires a long-term mindset with the attitude to look patiently into the future. In fact, the natural system takes some time to strike a balance between the species, the final forms of the plants and their proper growth. Nevertheless, it is possible to get fresh fruit and quick results from the smaller plants since the beginning of the process, as those take a short time to adapt and grow. These plants also help prepare the good soil and habits for larger plants.

A food forest garden is usually made up of layers of different plants that strategically help each other throughout their life. In good conditions, the plants themselves occupy the layer to which they naturally belong. In an agroforestry system, eight layers of plants usually have to be organized:

The Emergent layer is the tree layer that overtops the other trees, forming its crown above them. This shows us that they need maximum sunlight and do not tolerate shade. Usually, trees of this layer have only a few branches on the trunk, concentrating its growth on the crown where the sunlight is. Typical for this layer are the date palm, walnut, and pear trees. 

The Canopy Layer is composed of large fruit trees, nut trees and leguminous species with large crowns that are providing a good amount of shade during the dry and hot period. Plants are not in competition for reaching good soil, but only for capturing sunlight: trees are actually able to adapt their shape and to grow in harmony with other species to reach the best light spot. Examples for plants of this layer are mulberry, olive, fig or apricot trees.

The Understory Layer consists of small fruit trees and nut trees. Species of this layer prefer a good amount of sunlight but tolerate some shade. Examples for this layer are almond, orange, plum, nectarines, pomegranates, and apple.

The Shrubs Layer is composed of trees that need to be protected from direct sun. Plants of this layer are hazelnut, most berry shrubs and bananas.

The Herbs Layer is composed of short herbaceous plants, often annual.

The Groundcover Layer contains grasses, creepers, and low growing plants that protect topsoil from erosion and drought. This layer slows the speed of raindrops to lessen their impact and protects the soil’s dedicated network of roots, sand, organic matter, and hyphae (fungal roots).

The Vertical Layer is composed of climber plants that grow up trunks and branches of the bigger trees. 

The Roots Layer is really important because it pulls up minerals trapped in rocks to the plants: it is composed of tubers, rhizomes and bulbs.


Typical disposition of plants in a food forest system
Infographic: Critical Concrete

Thanks to the layered diversity of species, food-forest projects provide diversification of products over monoculture cultivations: each layer is in fact offering a specific variety of food in different seasons, from fruits and berries to tubers and mushrooms. In contrast to a monoculture, that requires the fixed distance between plants, agroforestry allows us to reach a much higher density of cultivation, as plants overlap in layers.

Pruning & organic matter

As mentioned before, food forests are designed to reproduce a sustainable and working forest system in which external help and additional human activities are limited, except one: pruning. “Chop and drop” is the key activity that provides the quantity of organic matter that becomes compost to fertilize the soil, extremely important to increase root activities and feed the plants. Pruning plants is also essential to help plants to breath, grow more and reach a good amount of sunlight, encouraging chlorophyll photosynthesis. The photosynthesis is pushing the mycorrhizae, a symbiotic association between a fungus and a plant, playing an important role in plant nutrition, soil biology and soil chemistry. 


Pictures from Silver Leaf Farm, Skala, Greece
© Southern Lights Project

The fertilization of the soil is constantly influenced by the production of new organic substances: the pruned branches that remained on the ground become water collectors in the rainy season and release moisture and water in dry periods. Following food forest principles is a good way to fight the soil exhaustion on a small or large scale. In fact, the use of different plants determines a symbiotic interplay in the use of the soil and is balancing nutrition resources. Every kind of soil could be defined as a “good” one: what matters is the amount of organic matter that determines the continuous fertilization of the soil. The soil is, also, acting as a sponge being a water and minerals container. Understanding of the importance of organic matter for the water management of the system can be found in the following numbers: If the amount of organic matter in the soil is increased by only 1%, an additional of 175.000 liters per hectare of water can be stored in the soil.


Comparison between an arid soil (left) and good one (right) rich of organic matter
© Southern Lights Project

Interview with Sheila from The Southern Lights Project

Food Forest had been proven a successful phenomenon on a smaller scale on a personal as well as on a commercial base. An amazing example for a prosperous sustainable business is the food forest farm The Southern Lights in Skala, Greece. Based on the organic farm of her father, Sheila introduced food forest features into her place, now cultivating more than 80 crops from which the farm and its employees can have a reliable income. 

What do I need to start a food forest?

“There is no minimum size, you can start a food forest on a spot as little as one square meter. It is helpful to have or gather some knowledge of the plants you want to put, especially their layer. And finally, you need to add a lot of organic matter..”

Are there any plants that are not so suitable for food forest?

Some plants might be not so easy to work with, like for example grains or rice and you will not get too much crop from this. But it is important to know your plants and things that might work out in some other conditions might not work out for yours.“

Should I be afraid of invasive species?

“If a species is invasive in your place, that means something is missing. Actually, those so-called “invasive” or pioneer species prepare the soil with their organic matter for other plants that have higher demands on the soil.”

Can I combine a food forest with animals?

“Animals can be very helpful for your food forest. They help to decompose the organic matter as they eat it and literally poop fertilizer. But I would rather keep my place welcoming to every species that feels comfortable in my place instead of bringing animals from outside.”

How can I know if my soil is good soil?

“Your soil should look like the soil in a forest, meaning you find a lot of organic matter on the ground, even if the very surface is dry, it is humid within deeper layers. And if you can find worms, mycelium and mushrooms it is a very good sign.”

What is the difference between “permaculture” and “food forest”?

Permaculture is a design technique, which can be applied to any kind of context. Its main ideas are Earth Care, People Care and Fair Share achieved through many principles, for example, to observe and interact or integrate rather than segregate. A food forest is a good example showing this principle being applied.”

Extract from her lecture, to see the whole presentation check our YouTube Channel

How to bring these principles to a larger scale?

A common prejudice concerning the adoption of the food forest concept to a larger scale might be the assumption that due to its unregulated structure, a forest-inspired agriculture might not be workable with large machines. But projects started and inspired by Ernst Götsch, a swiss botanist working in Brazil, had shown that large scale agriculture and the principles of a forest can go astonishingly well together.

He developed the concept of syntropic farming [Gr. syn, together with, trepein, to turn.]: usually, a minimum of 30 different species will be planted, taking into consideration their suitability to the local conditions, their ecophysiological function, their lifetime as well as the farmer’s productive goals. To make it workable with bigger machines and tools, most of the plants are cultivated in rows. In contrast to traditional farming, these rows not only consist of one single species, set apart for a few meters but follow the principles of agroforestry and food forests. These means, companion plants and trees from different layers are densely combined together to facilitate the supporting networks. Mostly fast-growing support species (like eucalyptus or mulberry) are mixed with income-generating fruit-bearing plants and trees. Natural processes are accelerated through heavy pruning of the support species in order to generate vast amounts of organic matter which will decompose to nutritious soil for the fruit trees and plants.

What all of them have in common is that the harvest is a side-effect of ecosystem regeneration, and vice versa – ecosystem regeneration is a side-effect of the efforts to produce a harvest.”
from Ernst Götsch

Bringing food forest to urban contexts

In view of the many advantages of a food forest, the question arises, how this principle could be brought into the urban context. Similar to existing gardening projects, food forests can contribute to make cities greener, bring communities together and reduce food transportation. The benefit of a food forest is that also perennial species are used. This means, once the structure of the food forest is in place, less work will be required than it may be the case with the replanting of annual vegetables. “Upgrade” existing urban gardening projects is a good start to bring the principles of a food forest into the urban environment, but also introducing it to the yards and gardens of school and kindergartens has been proven to be a good starting point so far. 

But the most practical way to bring a food forest into the city is by starting one of our own! Thanks to the introduction to the concept and the following workshop from Sheila Darmos from The Southern Lights, our very own little food forest is growing in our workshop’s backyard.

dog laying near a box of flowers

Samuel Ciantar taking pictures

girls painting food forest wall


Critical Concrete Food Forest, Porto, January 2020In this video she will guide you through the planting of the different layers to set up your own edible forest.

Sources

(1) [Hannah Ritchie, Max Roser] “Environmental impacts of food production”, January 2020, online available at: http://ijsetr.org/wp-content/uploads/2017/10/IJSETR-VOL-6-ISSUE-10-1364-1369. (Last accessed in June 2020).

[Sheila Darmos] “The Southern Lights Project”, lectures and workshop, January 2020, online available at: http://thesouthernlights.org/. (Last accessed in June 2020).

[Ernst Götsch] “Syntropic Farm Project”, online available at: https://agendagotsch.com/en/. (Last accessed in June 2020).

The post (Urban) Food Forest first appeared on Critical Concrete.
Did you miss our previous article…
https://cedarparkconcrete.org/?p=102

What Can External Waterproofing Membrane Failure Teach Architects about Sustainable Construction?

What Can External Waterproofing Membrane Failure Teach Architects about Sustainable Construction?

No matter your experience with waterproofing membrane failure, waterproofing breaches are not so easy to spot. In fact, according to one article in The Construction Specifier, the most minor-looking of leaks could be a sign. Depending on where and how the waterproofing was installed, that can lead to costly excavation work for basements, vaults, tunnels, and water features. It can also lead to full removal or replacement of fixtures and finishes in certain spaces, such as commercial kitchens and lobbies.

Still, that’s why envelope engineers or other professionals conduct site visits before construction is completed, right? They make sure the external waterproofing membrane is placed properly and effectively to mitigate the risk and damage of a breach as much as possible.

That can certainly lead to a relatively long-lasting waterproof structure. But it’s neither the most risk-free nor the most sustainable solution. But what does that mean for your architectural work? What does the risk and reality of external waterproofing membrane failure mean for you?

It’s Not Always Better to Stick with Technology You’re Comfortable With

Many architects like yourself are very familiar with external membranes. You know how to inspect and install them. You can physically see and touch them to sort them out before they’re covered. In short, there’s a sort of reassurance that comes with external membranes. You know they are actually there, and you know exactly what to do if any issues come up.

That comfort can be a detriment at times, however.

No Matter Your Comfort with Them, Membranes Are Still High-Risk

Sure, you can see the external membrane and know the ins and outs of it. But that doesn’t mitigate the risk of the membrane failing. If anything, too much confidence in it can stop you from trying out a less liable waterproofing system.

And even if you are able to physically check a membrane that’s been applied to the positive side of a structure and felt comfortable with that inspection, that doesn’t mean the membrane will stay that way. For instance, the backfilling process can easily tear the membrane. That can fail the whole waterproofing system right there as there is often no opportunity to excavate the membrane to repair it. As a result, builders often turn to epoxy injections to attempt to fix cracks and leaks that show up in accessible areas of a concrete’s surface. That still leaves water outside of those areas to continue passing through the concrete, threatening its structural integrity.

Too Much Confidence in Membranes Can Lead to Poor Concrete Construction

While we have talked about the risk that comes with membranes so far, that doesn’t mean they don’t have a place in construction. They certainly can be used effectively. But when they’re relied on to function perfectly by themselves and project stakeholders haven’t weighed the risks of their application realistically, it can negatively impact the quality of concrete construction.

Take the crack-bridging ability that some membranes have, for instance. Often, stakeholders in a project have full trust in this ability to cover cracks in concrete and prevent water from reaching those cracks. They make the assumption that this ability won’t fail. As a result, they feel less worried about having to face the consequences if concrete does crack. That leads them to care less about how concrete placement, curing, and control joints are handled.

Compounding this fact, stakeholders also highly regard the diversity of membranes available on the market. There are enough choices available that membranes seemingly come with an infinite number of different accessories to mitigate risks. But even with those accessories, membrane failure is still a possibility. Once that happens, those accessories aren’t going to stop a construction team from a long, costly repair process.

A membrane’s accessories might make that last situation seem highly unlikely. But unfortunately, that’s just not the case.

Patches of a waterproofing membrane have come away from the structure they were protecting.

In Fact, External Waterproofing Membrane Failure Is Incredibly Common

As the Australian Institute of Waterproofing member Wet-seal notes, waterproofing makes up 80% of complaints during construction. It’s an impressive statistic considering waterproofing does not take up a huge chunk of the cost to construct a structure. Waterproofing typically only takes up 1% to 2% of that cost. So why are complaints so high?

A big reason for that is likely how easy it is for external waterproofing membranes to fail. It’s a pervasive enough issue that water intrusion is the cause for around 70% of construction lawsuits.

So, how does external waterproofing membrane failure get to be that big of a concern? Let’s look at the three most common reasons why.

One of the Main Culprits for This Is Simply Poor Preparation and Installation

At least 90% of waterproofing failures come from poor handiwork.

It’s not hard to see why either. Despite not being as costly as other parts of construction, waterproofing is no less complex. There are lots of factors to consider for it, and if one aspect isn’t considered carefully enough, a failure could be waiting around the corner.

A clock rests on top of a blueprint at a worksite next to other blueprint tools.

Poor Preparation Is Often Due to a Lack of Time

Builders need to make sure the surface of the substrate they want to apply a membrane to has the following qualities:

A smooth and clean exteriorFalls for drainageA space absent of formwork distortions, voids, and protrusions

To achieve these qualities, they need to spend time and attention on looking to see if the substrate surface has been spoiled by debris and residue and whether they need to scrape and vacuum it. Otherwise, without a pristine substrate surface, it is likely that a waterproofing application will not be successful.

An external membrane has fallen away from the concrete foundation it was applied to.

Poor Installation Is No Different

Builders have multiple items to install to ensure that a structure has an effective and thorough waterproofing system. Depending on the structure, that might mean knowing the correct installation procedure and executing it for the following products:

Waterstop anglesPerimeter flashingsVertical flashing anglesPressure strip flashingsChased drop flashingsControl jointsDrainage flangesCavity flashing downturnsReinforcing at junctionsOverflow devicesLinear strip drainsSlip joints

Not having the time to properly install even just one of these items can weaken the overall waterproofing system they’re a part of, making it more vulnerable to leaks.

In short, standing in the way of both proper waterproofing preparation and installation is time. Construction projects tend to run on tight schedules, so it can be tempting to skimp on the smaller details. Whether that’s quickly getting through backfilling and tearing a membrane unintentionally in the process or limiting quality assurance processes for faster work, it’s all done to help save what little time a project has. And while it might speed up a project in the short-term, the following repairs that result from this work will add up in the long-term to the project’s expenses.

The Second Culprit Is a Failure to Prime Areas Effectively

Waterproofing membranes, even self-adhering ones, require a primer during their application process. After all, builders want to ensure that their membranes remain bonded to a substrate for the life of the structure they’re waterproofing. And using a primer to prepare the surface of a substrate helps to enhance the adhesiveness of a membrane. It does so by reducing the porosity, dusting, air entrapment, and high-residual moisture of a substrate.

But it will only impart those qualities if builders prime the substrate surface effectively.

This is also an area that runs into issues with timing. When constructing homes, for example, a builder may not always accurately estimate how long it will take to prime the surface. As a result, they might schedule in tiling to be done in a bathroom and expect that the priming will only take a day or so. However, priming could take longer depending on the membrane, temperature, and weather conditions.

If the schedule is too tight, that could lead to a substrate surface with no priming, insufficient priming, or the wrong primer entirely. All of which can cause the membrane to debond. That creates gaps in the membrane system, leaving room for moisture to penetrate the substrate and weaken its structural integrity.

The Last Is a Lack of Insight into the Substrate’s Residual Moisture

Unsurprisingly, out of the top three common causes of external waterproofing membrane failure, moisture remains one of the bigger obstacles. All it takes is poor preparation, installation, or priming for moisture to enter the structure and wreak havoc.

But what if moisture was already surrounding the structure but had gone unnoticed? As you might have guessed by now, that’s a pretty common situation. And it likely stems from a lack of awareness at how much moisture content a substrate has.

Without an accurate estimate of moisture content using a tool like a moisture meter, there is a high chance that the substrate still has residual moisture. When left alone, that moisture can interfere with a membrane’s ability to bond to a substrate, causing structural weakness to occur.

A construction worker is waterproofing a flat roof with a bitumen-sealing membrane.

That Puts Membranes in an Awkward Spot When It Comes to Sustainability

Because it is so easy to damage membranes through application alone and because that damage can have severe consequences for a structure, membranes should not be considered the ideal sustainable solution. After all, you can’t call something sustainable if it can’t be upheld safely in an environment for a long time.

Though, it is true that not all membranes are going to fail immediately during application or afterwards. What about those then? Would we call the ones that can last without wear and don’t hurt their environment sustainable?  It’s debatable, but in this instance, the answer would still likely be no. And that’s because many membranes come with a short life span of around one to 10 years before they deteriorate.

After that, they need to be replaced. If they aren’t, then water damage is a more likely possibility. And if they are, then the building’s maintenance team needs to use up monetary and construction resources to get the same waterproofing protection.

All in all, it’s a very short-term version of sustainability that is draining resources at regular periods unnecessarily as there are long-term forms of waterproofing out there.

A tanker truck is driving through a foggy road.

Even Worse, Acquiring External Membranes Is Also Not That Sustainable

Even if you still want to stick with specifying and using external membranes, you may find it increasingly difficult to do so.

For One, There Is a Global Materials Shortage That May Hinder That

Between the ongoing pandemic, the past Suez Canal blockage, delayed and pricier shipping, and the mass blackouts in Texas that led to chemical plant shutdowns, there is a significant materials shortage going on.

And waterproofing membranes have not gone unscathed. Often made with plastics and other materials that typically require crude oil, membranes have been hit in both areas. Plastics are hard enough to get that companies like Acer and Dell are starting to create products with recycled plastic instead. Meanwhile, crude oil is in a different sticky situation. Instead of a shortage of the product itself, there’s a shortage of tanker truck drivers in the United States of America. At least 50,000 more drivers are needed. With the two materials harder to supply, that is going to make waterproofing membranes also harder to supply and will likely increase their costs as demand goes up for that shorter supply.

The general perception is that this might get better sometime in 2022 or a little later. But does that mean you should wait it out?

Even Without a Shortage, Membranes Will Still Be Non-Eco-Friendly

While only some membranes use plastic, almost all require crude oil in their manufacturing. And that doesn’t bode well for the environment. According to the University of Calgary’s energy education team, whether drilling for oil, transporting it, refining it, or using it otherwise, there is always an environmental impact. Extracting it, for example, destroys the land around it. And other oil industry activities can end up producing chemicals that contribute to smog or creating greenhouse gases that increase the effects of global warming. Moreover, if during any part of that process, the oil spills, it can impact the plants, soil, and well-being of animals, making the environment wholly toxic.

All of which is definitely not a way to maintain human well-being either, making membranes even less ideal for sustainability.

A construction worker is throwing a pulpable bag of KIM into ready-mix concrete.

Nowadays, There Are Better Alternatives Out There

And they come in the form of crystalline waterproofing admixtures.

To apply these products, builders have one step and that’s it. There’s no detailed handiwork or long time period required. All builders have to do is add your specified admixture into the concrete mix. From there, the mix will have the waterproofing properties it needs. It’s a short and sweet process that should permanently waterproof a concrete structure without the risk of application error.

The only real challenge you’ll come across is finding which crystalline admixture is right for you.

Just Look Up Your Options for Concrete Waterproofing Admixtures

The American Concrete Institute has classified these products under two categories: permeability-reducing admixtures for non-hydrostatic conditions (PRAN) and permeability-reducing admixtures for hydrostatic conditions (PRAH).

The first of the two we recommend for low-risk use. PRANs, as their name implies, are not meant to handle heavy water pressure. Instead, they are more designed to repel water. To that end, they often use water-repellant chemicals. These might involve soaps, vegetable oils, or even petroleum. Such materials work to leave a layer alongside concrete pores that repels water while still leaving the pores themselves open. However, PRANs can also make use of chemically active or inert fillers, which act as densifiers to limit how much water gets into concrete pores. In either case, you don’t get watertight waterproofing with them.

What you do get is a solid dampproofing solution. So you could use PRANs for projects that will encounter a little moisture ingress. That might involve using them to repel rain off a structure or  to minimize the structure’s dampness.

So, what about PRAHs?

Now, these are what you should really keep an eye out for. These are recommended for long-term waterproofing against heavy water pressure. They tend to use a hydrophilic polymer plug or crystal technology. And that creates waterproofing that is impervious to damage or deterioration and capable of bridging cracks in concrete.

It makes PRAHs a perfect option for watertight waterproofing in any concrete structure.

(For even more details on these waterproofing admixtures and more, get our free e-book on the topic!)

We Recommend Krystol Internal Membrane
™
(KIM) for Thorough, Sustainable PRAH Waterproofing

If you want a specific PRAH recommendation, we suggest KIM.

When you specify it, KIM gets added to the concrete mix where it disperses Krystol technology throughout the entire mix. That way, once the concrete cures, the technology will rest dormant throughout the slab until it encounters water. Once that happens, the technology will activate and react to the water and nearby unhydrated cement particles to create interlocking crystals (which you can visibly see react in a sample via time-lapse here!). These crystals go on to fill up capillary pores and micro-cracks in the concrete. That blocks the water from passing through.

And it does that for the entire life of the concrete as KIM remains within concrete permanently.

So you get lifetime waterproofing for the simple act of adding KIM to a mix. There’s less labor involved and no installation risks, which will save your construction team time and money, expediting their work in the process. There are no shortage issues. And even better, KIM comes with several sustainable advantages:

Reducing site disturbance by eliminating the need for excavationEliminating any possible waste it has by coming in custom-size pulpable bagsContaining no volatile organic compoundsHaving NSF certification for safe use with potable waterEnsuring KIM-treated concrete can be recycled post-demolition

So when you use KIM, you can earn LEED points while also benefitting from less labor-intensive and time-consuming permanent, tear-free waterproofing.

Las Vegas' CityCenter

Waterproofing Membrane Failure Is a Sign to Revolutionize Your Design

When you think about external waterproofing membrane failure and how common it is, consider what the alternatives are. There are many concrete waterproofing admixtures out there that could better solve the issues that come with membranes. And if you want one that gives you an edge in the LEED sustainability framework, you don’t have to look farther than KIM. It will revolutionize your architectural design and help it become the green watertight structure you’re looking for.

Free e-book! Download it today to learn about the four aspects to consider when specifying crystalline waterproofing admixtures.

The post What Can External Waterproofing Membrane Failure Teach Architects about Sustainable Construction? appeared first on Kryton.

Concrete Abrasion Resistance: The Bad, the Good, and the Better (Interview Part 3)

Concrete Abrasion Resistance: The Bad, the Good, and the Better (Interview Part 3)

Last time in this interview series, we looked at just how effective Hard-Cem is as a solution for increasing concrete abrasion resistance. (For a recap, take a look at our first part and second part in this interview series!)

Unlike conventional surface-applied products, Hard-Cem has a worry-free application process. And on top of that, it has been proven to be effective through third-party testing. Part of that testing involved a modified ASTM C627 test, which showed just how resistant Hard-Cem made concrete to abrasive forces.

However, that’s not all it has going for it. Hard-Cem can also help construction professionals with their sustainability efforts. To see how, we asked Kryton Technical Director Jeff Bowman for more insight.

First, why don’t we review the environmental concerns surrounding concrete?

I’m sure many people are aware that roughly, for every 1 ton of Portland cement that’s manufactured, 1 ton of CO2 is released into the atmosphere. But of course, we don’t make buildings out of cement. We make them out of concrete. So I think it’s more useful to look at the final carbon load of the concrete itself.

Where can we learn about the final carbon load of concrete?

Now, there are many industry resources for this. The one that I’d like to draw from today is the Canadian Ready-Mixed Concrete Association’s environmental product declaration. It has a wide range of information and breaks concrete down by strength class. It also publishes industry benchmarks for each strength class.

But for just a broad view of the information displayed, you can see that depending on the concrete strength and many other factors, the carbon load of that concrete is normally going to range about 250 kg to 500 kg of CO2 per cubic meter of concrete.

That’s a significant environmental investment. So you really want to make sure your concrete is going to be durable and last a long time with minimal maintenance.

How does Hard-Cem help mitigate this carbon issue?

Well, first of all, just by having Hard-Cem reduce the wear and tear of abrasion on a concrete slab, you’re reducing, delaying, and often preventing some of that maintenance activity you’d otherwise need to do to replace that concrete or grind it down and resurface it. You can avoid using more concrete to fix it at a later time.

Hard-Cem-treated concrete (as seen on the right) can get double the wear life and an increased resistance to abrasion and erosion compared to regular concrete (as seen on the left).
Hard-Cem can also help you make more efficient choices with your concrete. Sometimes, the structural requirements of a project are satisfied with a typical mid-strength concrete.

But to ensure good abrasion resistance, a higher strength concrete is used instead. This increases the carbon footprint and is an inefficient use of resources. Hard-Cem may allow the lower strength option to be used instead while still designing for abrasion resistance. This can allow the use of more environmentally efficient concrete without sacrificing abrasion performance.

So, Hard-Cem can help reduce the carbon footprint now and down the road?

Yes, it can.

Remember, depending on the application, oftentimes, a higher strength concrete may introduce some problems that are actually detrimental to the overall performance of the job, such as increased shrinkage, cracking, and curling.

So using a more conventional mix with Hard-Cem can help you avoid these problems while still achieving excellent abrasion durability.

To get high-strength concrete, builders can add more silica fume or cement. However, silica fume’s maximum abrasion resistance increase is 13%. And to double that resistance with cement, builders would need 80% more cement content.

What about Hard-Cem’s carbon footprint?

The carbon footprint of Hard-Cem is very small. It’s only a percentage or two of the overall mix. As we often see with admixtures, it gives you very good performance value relative to its environmental impact.

What does all that mean for the lifetime carbon footprint of a structure?

Being able to produce a sustainable mix now is a very worthy goal. But it’s true that it’s also important to take a look at the lifetime carbon footprint of that structure. Depending on the maintenance and replacement cycle, the lifetime carbon footprint can be much higher than the original construction cost.

Now, we have a really interesting case study on this: the New Afton Mine. This is near Kamloops, British Columbia, Canada, and was built in 2011.

In the ore collection and processing area, within three years, the mine had so much wear and tear just from the mining equipment. And with the ore on the ground being pressed into the concrete and ground between those wheels, the owners had to replace, not just resurface but replace, the concrete in that area within only three years. So they were set on a three-year replacement interval, which is not very sustainable.

But in 2014, they replaced it with Hard-Cem concrete, and that concrete is still performing today. So what you can see here is that by investing in durability, they’ve been able to skip at least two replacement events. And they’re actually partway through what would have been their third.

Ever since Hard-Cem was added into replacement concrete for the mine, the mine has provided six continuous years of service without the need for more concrete replacement work.
 

In short, Hard-Cem has reduced the lifetime carbon footprint by almost 50%. And that’s just so far.

Thank you for all that detail, Jeff! It seems that Hard-Cem really will protect concrete against abrasion better than traditional methods. It’s also easy to install and doesn’t change a concrete mix’s properties. And on top of that, it reduces your carbon footprint, increases the durability and life cycle of your concrete, and has been in successful performance for years. What more could you ask for from a concrete hardening solution!

Finding the best product to increase concrete wear life isn't hard. It's Hard-Cem. Click here to learn more.

The post Concrete Abrasion Resistance: The Bad, the Good, and the Better (Interview Part 3) appeared first on Kryton.

4 Benefits of Using Concrete for Your Commercial Flooring

4 Benefits of Using Concrete for Your Commercial Flooring

When it comes to commercial flooring, concrete is one of the most popular choices.

For both creative and practical reasons, many businesses typically choose concrete floors for their stores, patios, and walkways. 

On top of being durable and easy to install, this type of flooring also offers an array of other benefits, including:

1. Infinite design possibilities

Concrete flooring is available in a wide range of colors and patterns. Any hue can be created to accent your commercial property’s interior.

In addition to picking from an array of beautiful colors, you can also create a unique custom design. For example, you may want a pattern or logo that matches the branding of your business. Some concrete contractors are even capable of creating specialty textures with stamped concrete that replicate wood grain or natural stone materials.

2. Easy to clean

If you have a high volume of foot traffic in your commercial property, concrete is the perfect flooring option. Not only does it withstand heavy use and wear and tear, but concrete floors don’t absorb dirt or moisture, making spills much easier to spot and wipe up. All you need is a mop or broom

Concrete floors are also more resistant to water damage, so your property is better protected against leaks and spills that can cause significant damage otherwise.

This type of flooring also doesn’t harbor allergens or bacteria, so it’s perfect for high-traffic facilities like hospitals where many people may be affected by dust particles and other allergens that accumulate in carpets or rugs.

3. Reduces noise pollution and energy costs

Concrete offers a high degree of sound insulation, which can be especially useful in the workplace.

If you work in an environment where there’s a lot of phone conversations and meetings taking place throughout the day, concrete floors will act as an effective barrier against the noise, rather than amplifying it like carpet does.

Additionally, concrete floors will also help keep your energy bill down in the long term because they offer a high degree of thermal insulation. This means that you won’t have to adjust your heating and cooling system as much throughout the winter or summer months.

4. Lasts up to 40 years

Concrete floors can last for decades (up to 40 years) as long as they’re properly maintained and installed.

With this type of flooring, you won’t have to deal with the hassle of replacing materials every few years, saving you time and money in the long term. However, it’s important to note that concrete isn’t perfect; you will likely need to repair a few cracks here and there as time goes on. Otherwise, these imperfections will compromise the integrity of your flooring and make it susceptible to further damage.

Fortunately, these types of repairs are relatively minor and can be completed in a matter of hours by a professional contractor without too much trouble. 

While there are many distinct advantages to using concrete for your commercial flooring, the success or failure of your project ultimately depends on picking the right contractor. Our professionals at Port Aggregates are highly skilled in creating beautiful, precise pours every time. Contact us today to request a quote

The post 4 Benefits of Using Concrete for Your Commercial Flooring appeared first on Port Aggregates.

Did you miss our previous article…
https://cedarparkconcrete.org/?p=67

Building a Home in a Hurricane-Prone Area: What You Need to Know

Building a Home in a Hurricane-Prone Area: What You Need to Know

For the majority of south and east coast residents, the fear of hurricane season is at the forefront of their minds. 

As global warming continues to worsen, we can anticipate these storms to get progressively stronger over time.

Understandably, this creates a great amount of fear for everyone and likely leaves you wondering what you can do to prevent damage the next time around.

When building a house in these hurricane-prone areas, you should always talk to your contractor about your options. They will likely present to you two choices: wood and precast concrete

The benefits of both materials are endless, but there are also disadvantages to consider.

Today, we’re going to take a look at some of the pros and cons of each material, so you can make an informed decision about which one is right for your needs.

Wood

Pros

One of the biggest benefits of wood is that it’s a relatively cheap material compared to precast concrete. It can be made from a variety of resources, such as bamboo or cedar, which will make it more eco-friendly in the long term. Wood is also easier to alter and transport if you’re not happy with the structure of your home once it’s built.

Cons

Wood does not stand up well against high winds in a storm. Not to mention, it will only add fuel to the fire if you live in an area where forest fires are common. Wood structures may also have to be replaced more often than precast concrete and other building materials, thanks to decay from termites or other natural occurrences.

Precast Concrete

Pros

Precast concrete is stronger, heavier, and more durable than wood when it comes to withstanding bad storms or hurricanes. There are also a variety of precast concrete materials to choose from, which can allow you to get creative with your architectural design. 

Concrete lasts for decades against all forces of nature, is a better insulator than wood, and is resistant to termites.

Cons

Unfortunately, concrete isn’t technically environmentally-friendly, but this is the sacrifice you’ll have to make to save your house during a hurricane. 

Precast concrete is also more expensive and time-consuming than wood structures during the building process, but you truly get what you pay for in this industry. 

If you’re looking for a material that will withstand a hurricane, then precast concrete is your best bet. At Port Aggregates, we offer the highest quality concrete in the state, which is why we’ve been a trusted industry professional for over 40 years. Contact us today to request a quote

The post Building a Home in a Hurricane-Prone Area: What You Need to Know appeared first on Port Aggregates.

Always check our latest articles at…
https://cedarparkconcrete.org//category/concrete-maintenance